PERTINENT FACTS

In anesthetized patients, forehead temperatures via Moving-Line temperature strips were within 0.3° F of esophageal probe temperatures.

In anesthetized patients during cardiopulmonary bypass cooling and rewarming, forehead temperatures via Moving-Line temperature strips were within: 0.3° C of bladder temperatures 0.5° C of esophageal temperatures, and 1.0° C of pulmonary artery temperatures.

In anesthetized patients, forehead temperatures via Moving-Line temperature strips were within 0.5° C of core temperatures in two-thirds of the patients and within 1.0° C in virtually all patients. Inducing anesthesia, vasomotor action, and changes in ambient temperatures had no meaningful affects on the forehead temperature reading.

In anesthetized pediatric patients, forehead temperatures via Moving-Line temperature strips were very closely correlated to esophageal probe temperatures.

Concerning Moving-Line temperature strips. “Both the accuracy and precision of liquid-crystal skin surface monitoring were within clinically acceptable ranges, irrespective of thermoregulatory vasomotion.”

TITLE

“Comparison of Crystalline Skin Temperature to Esophageal Temperatures During Anesthesia”

“Comparison of Crystalline Skin Temperature to Esophageal, Pulmonary Artery, and Bladder Temperatures During Cardiopulmonary Bypass”

“Influence of Thermoregulatory Vasomotion and Ambient Temperature Variation on the Accuracy of Core-temperature Estimates by Cutaneous Liquid Crystal Thermometers”

“A Comparison Of Esophageal Temperature Readings And Liquid Crystal Temperature Readings In The Pediatric Population”

“Thermoregulatory Vasomotion Minimally Influences the Precision of Liquid-Crystal Skin-Surface Estimates of Core Temperature”

AUTHORS & PUBLICATIONS

T. Ikeda, M.D.; D.I. Sessler, M.D.; D. Marder, B.A.; J. Xiong, M.D. Anesthesiology, 1997; 86:603-12

T. Ikeda, M.D.; D. Marder, B.A.; D.I. Sessler, M.D. Anesthesiology, V85, No 3A, Sep 1996, A419

AFFILIATIONS OF AUTHORS

Anes. Dept., Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT

Anes. Dept., Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT

Dept. of Anes., University of California San Francisco; Dept. of Anes & Intensive Care, University of Vienna

Dept. of Nurse Anes., Virginia Commonwealth University.

Dept. of Anes., University of California San Francisco; Dept. of Anes. & Intensive Care, University of Vienna
Pertinent Facts

Inter-operative alterations in ambient temperatures “do not produce clinically important bias” in forehead temperatures monitored via Moving-Line temperature strips. Concerning Moving-Line temperature strips, the study concluded, “Overall, the accuracy and precision of liquid-crystal thermometry appeared acceptable for intraoperative use.”

At all time points during malignant hyperthermia in pigs, there was very close correlation between invasive esophageal temperatures and pulmonary artery temperatures compared to axilla skin temperatures as measured by Moving-Line temperature strips. The Moving-Line temperature strips placed on the axilla skin also correlated far better to core temperatures than did electronic rectal temperature probes. (The pig axilla skin is referenced since it is believed to be more comparable to human forehead skin in terms of perfusion and thickness than are the pig forehead skin or neck skin.)

Temperatures displayed by Moving-Line temperature strips were far more reliable than temperatures displayed by any tested brand of Non-Moving-Line temperature strips.

Published Studies Regarding Moving-Line Temperature Strips

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Changes in Ambient Temperature Minimally Influence the Accuracy of Liquid-Crystal Skin-Surface Estimates of Core Temperature”</td>
<td>P.A. Iaizzo, Ph.D.; D.H. Chris, M.D.; R.S. Zink, M.D.; G. Kumar, MBBS; D. I. Sessler, M.D.</td>
<td>Dept. of Anes. & Dept. of Physiology, University of Minnesota; Dept. of Anes., University of California San Francisco</td>
</tr>
<tr>
<td>“Thermal Response in Acute Porcine Malignant Hyperthermia”</td>
<td>P.A. Iaizzo, Ph.D.; D.H. Chris, M.D.; R.S. Zink, M.D.; G. Kumar, MBBS; D. I. Sessler, M.D.</td>
<td>Dept. of Anes. & Dept. of Physiology, University of Minnesota; Dept. of Anes., University of California San Francisco</td>
</tr>
<tr>
<td>“Measurement Offset With Liquid Crystal Temperature Indicators”</td>
<td>T.S. Shomaker, M.D.; D.G. Bjoraker, M.D.</td>
<td>Dept. of Anes., University of Florida College of Medicine.</td>
</tr>
</tbody>
</table>